skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McLeod, A F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The evolution of protoplanetary disks in regions with massive OB stars is influenced by externally driven winds that deplete the outer parts of these disks. The winds have previously been studied via forbidden oxygen emission lines, which also arise in isolated disks in low-mass star-forming regions (SFRs) with weak external UV fields in photoevaporative or magnetic (internal) disk winds. It is crucial to determine how to disentangle external winds from internal ones. Here, we report a proxy for unambiguously identifying externally driven winds with a forbidden line of neutral atomic carbon, [CI] 8727 Å. We compare for the first time the spatial location of the emission in the [OI] 5577 Å, [OI] 6300 Å, and [CI] 8727 Å lines traced by VLT/MUSE-NFM with the ALMA Band 7 continuum disk emission in a sample of 12 proplyds in the Orion Nebula Cluster (ONC). We confirm that the [OI] 5577 Å emission is co-spatial with the disk emission, whereas that of [OI] 6300 Å is emitted both on the disk surface and on the ionization front of the proplyds. We show for the first time that the [CI] 8727 Å line is also co-spatial with the disk surface in proplyds, as seen in the MUSE and ALMA data comparison. The peak emission is compatible with the stellar location in all cases, apart from one target with high relative inclination with respect to the ionizing radiation, where the peak emission is located at the disk edge in the direction of the ionizing radiation. To verify whether the [CI] 8727 Å line is detected in regions where external photoevaporation is not expected, we examined VLT/X-Shooter spectra for young stars in low-mass SFRs. Although the [OI] 5577 Å and 6300 Å lines are well detected in all these targets, the total detection rate is ≪10% in the case of the [CI] 8727 Å line. This number increases substantially to a ∼40% detection rate inσ-Orionis, a region with higher UV radiation than in low-mass SFRs, but lower than in the ONC. The spatial location of the [CI] 8727 Å line emission and the lack of its detection in isolated disks in low-mass SFRs strongly suggest that this line is a tell-tale tracer of externally driven photoevaporative winds, which agrees with recent excitation models. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational wave events involving spectacular black hole mergers indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity (Z). TheHubbleSpace Telescope has devoted 500 orbits to observing ∼250 massive stars at lowZin the ultraviolet (UV) with the COS and STIS spectrographs under the ULLYSES programme. The complementary X-Shooting ULLYSES (XShootU) project provides an enhanced legacy value with high-quality optical and near-infrared spectra obtained with the wide-wavelength coverage X-shooter spectrograph at ESO’s Very Large Telescope. We present an overview of the XShootU project, showing that combining ULLYSES UV and XShootU optical spectra is critical for the uniform determination of stellar parameters such as effective temperature, surface gravity, luminosity, and abundances, as well as wind properties such as mass-loss rates as a function ofZ. As uncertainties in stellar and wind parameters percolate into many adjacent areas of astrophysics, the data and modelling of the XShootU project is expected to be a game changer for our physical understanding of massive stars at lowZ. To be able to confidently interpretJames WebbSpace Telescope spectra of the first stellar generations, the individual spectra of low-Zstars need to be understood, which is exactly where XShootU can deliver. 
    more » « less